Facile Synthesis of SnS-SnS₂ Heterostructure p-n Diode

Jung Ho Kim^{1,2}, Seok Joon Yun^{1,2}, Jiong Zhao^{1,2} and Young Hee Lee^{1,2*}

¹Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 446-746, Korea

²Department of Energy Science, Sungkyunkwan University, Suwon 446-746, Korea leeyoung@skku.edu

Abstract

After the discovery of graphene and its extraordinary physical properties, other two-dimensional layered materials are also highlighted to become promising candidates for future nanotechnology. Sn-sulfides are one of the interesting layered materials which have different crystal phases such as hexagonal SnS_2 and orthorhombic SnS. These two materials show different properties such as SnS_2 showing n-type whereas SnS showing p-type. Recently individual growth and artificial stacking of these two materials have been demonstrated [1].

In this work, by simply removing sulfur atoms from the top part of as-exfoliated SnS_2 single crystal, we could achieve a facile method to synthesize SnS(p-type) and $SnS_2(n-type)$ vertical heterostructure. To confirm our method, we conducted Raman, TEM, and XPS measurements and showed that the crystal is indeed a heterostructure. Furthermore, we fabricated Graphene- SnS_2 -SnS-Graphene vertical p-n diode to confirm rectifying behavior and photoresponse of the device.

References

[1] JH Ahn et al., Nano Lett., 15 (2015) 3703.

Figures